Перевод: со всех языков на английский

с английского на все языки

Newcastle Gateshead

  • 1 практиковать

    Универсальный русско-английский словарь > практиковать

  • 2 практиковать

    Универсальный русско-английский словарь > практиковать

  • 3 Thompson, Benjamin

    [br]
    b. 11 April 1779 Eccleshall, Yorkshire, England
    d. 19 April 1867 Gateshead, England
    [br]
    English coal owner and railway engineer, inventor of reciprocal cable haulage.
    [br]
    After being educated at Sheffield Grammar School, Thompson and his elder brother established Aberdare Iron Works, South Wales, where he gained experience in mine engineering from the coal-and ironstone-mines with which the works were connected. In 1811 he moved to the North of England as Managing Partner in Bewicke's Main Colliery, County Durham, which was replaced in 1814 by a new colliery at nearby Ouston. Coal from this was carried to the Tyne over the Pelew Main Wagonway, which included a 1,992 yd (1,821 m) section where horses had to haul loaded wagons between the top of one cable-worked incline and the foot of the next. Both inclines were worked by stationary steam engines, and by installing a rope with a record length of nearly 1 1/2 miles (2.4 km), in 1821 Thompson arranged for the engine of the upper incline to haul the loaded wagons along the intervening section also. To their rear was attached the rope from the engine of the lower incline, to be used in due course to haul the empties back again.
    He subsequently installed this system of "reciprocal working" elsewhere, in particular in 1826 over five miles (8 km) of the Brunton \& Shields Railroad, a colliery line north of the Tyne, where trains were hauled at an average speed of 6 mph (10 km/h) including rope changes. This performance was better than that of contemporary locomotives. The directors of the Liverpool \& Manchester Railway, which was then being built, considered installing reciprocal cable haulage on their line, and then decided to stage a competition to establish whether an improved steam locomotive could do better still. This competition became the Rainhill Trials of 1829 and was decisively won by Rocket, which had been built for the purpose.
    Thompson meanwhile had become prominent in the promotion of the Newcastle \& Carlisle Railway, which, when it received its Act in 1829, was the longest railway so far authorized in Britain.
    [br]
    Bibliography
    1821, British patent no. 4602 (reciprocal working).
    1847, Inventions, Improvements and Practice of Benjamin Thompson, Newcastle upon Tyne: Lambert.
    Further Reading
    W.W.Tomlinson, 1914, The North Eastern Railway, Newcastle upon Tyne: Andrew Reid (includes a description of Thompson and his work).
    R.Welford, 1895, Men of Mark twixt Tyne and Tweed, Vol. 3, 506–6.
    C.R.Warn, 1976, Waggonways and Early Railways of Northumberland, Newcastle upon Tyne: Frank Graham.
    ——c. 1981, Rails between Wear \& Tyne, Newcastle upon Tyne: Frank Graham.
    PJGR

    Biographical history of technology > Thompson, Benjamin

  • 4 Pattinson, Hugh Lee

    SUBJECT AREA: Metallurgy
    [br]
    b. 25 December 1796 Alston, Cumberland, England
    d. 11 November 1858 Scot's House, Gateshead, England
    [br]
    English inventor of a silver-extraction process.
    [br]
    Born into a Quaker family, he was educated at private schools; his studies included electricity and chemistry, with a bias towards metallurgy. Around 1821 Pattinson became Clerk and Assistant to Anthony Clapham, a soap-boiler of Newcastle upon Tyne. In 1825 he secured appointment as Assay Master to the lords of the manor of Alston. There he was able to pursue the subject of special interest to him, and in January 1829 he devised a method of separating silver from lead ore; however, he was prevented from developing it because of a lack of funds.
    Two years later he was appointed Manager of Wentworth Beaumont's lead-works. There he was able to continue his researches, which culminated in the patent of 1833 enshrining the invention by which he is best known: a new process for extracting silver from lead by skimming crystals of pure lead with a perforated ladle from the surface of the molten silver-bearing lead, contained in a succession of cast-iron pots. The molten metal was stirred as it cooled until one pot provided a metal containing 300 oz. of silver to the ton (8,370 g to the tonne). Until that time, it was unprofitable to extract silver from lead ores containing less than 8 oz. per ton (223 g per tonne), but the Pattinson process reduced that to 2–3 oz. (56–84 g per tonne), and it therefore won wide acceptance. Pattinson resigned his post and went into partnership to establish a chemical works near Gateshead. He was able to devise two further processes of importance, one an improved method of obtaining white lead and the other a new process for manufacturing magnesia alba, or basic carbonate of magnesium. Both processes were patented in 1841.
    Pattinson retired in 1858 and devoted himself to the study of astronomy, aided by a 7½ in. (19 cm) equatorial telescope that he had erected at his home at Scot's House.
    [br]
    Principal Honours and Distinctions
    Vice-President, British Association Chemical Section 1838. Fellow of the Geological Society, Royal Astronomical Society and Royal Society 1852.
    Bibliography
    Pattinson wrote eight scientific papers, mainly on mining, listed in Royal Society Catalogue of Scientific Papers, most of which appeared in the Philosophical
    Magazine.
    Further Reading
    J.Percy, Metallurgy (volume on lead): 121–44 (fully describes Pattinson's desilvering process).
    Lonsdale, 1873, Worthies of Cumberland, pp. 273–320 (contains details of his life). T.K.Derry and T.I.Williams, 1960, A Short History ofTechnology, Oxford: Oxford University Press.
    LRD

    Biographical history of technology > Pattinson, Hugh Lee

  • 5 Bewick, Thomas

    SUBJECT AREA: Paper and printing
    [br]
    b. August 1753 Cherryburn House, Ovingham, Northumberland, England
    d. 8 November 1828 Gateshead, England
    [br]
    English perfecter of wood-engraving.
    [br]
    The son of a farmer, Bewick was educated locally, but his progress was unremarkable save for demonstrating an intense love of nature and of drawing. In 1767 he was apprenticed to Ralph Beilby, an engraver in Newcastle. Wood-engraving at that time was at a low ebb, restricted largely to crude decorative devices, and Hogarth, commenting on a recent book on the art, doubted whether it would ever recover. Beilby's business was of a miscellaneous character, but Bewick's interest in wood-engraving was noticed and encouraged: Beilby submitted several of his engravings to the Royal Society of Arts, which awarded a premium of £80 for them. His apprenticeship ended in 1774 and he went to London, where he readily found employment with several printers. The call of the north was too strong, however, and two years later he returned to Newcastle, entering into partnership with Beilby. With the publication of Select Fables in 1784, Bewick really showed both his expertise in the art of wood-engraving as a medium for book illustration and his talents as an artist. His engravings for the History of British Birds mark the high point of his achievement. The second volume of this work appeared in 1804, the year in which his partnership with Beilby was dissolved.
    The essential feature of Bewick's wood-engravings involved cutting across the grain of the wood instead of along it, as in the old woodcut technique. The wood surface thus obtained offered a much more sensitive medium for engraving than before. It paved the way for the flowering of engraving on wood, and then on steel, for the production of illustrated material for an ever wider public through the Victorian age.
    [br]
    Bibliography
    1864, Memoir of Thomas Bewick (autobiography, completed by his daughter). 1784, Select Fables.
    Further Reading
    M.Weekley, 1963, Thomas Bewick, Oxford: Oxford University Press.
    LRD

    Biographical history of technology > Bewick, Thomas

  • 6 Hedley, William

    [br]
    b. 13 July 1779 Newburn, Northumberland, England
    d. 9 January 1843 Lanchester, Co. Durham, England
    [br]
    English coal-mine manager, pioneer in the construction and use of steam locomotives.
    [br]
    The Wylam wagonway passed Newburn, and Hedley, who went to school at Wylam, must have been familiar with this wagonway from childhood. It had been built c.1748 to carry coal from Wylam Colliery to the navigable limit of the Tyne at Lemington. In 1805 Hedley was appointed viewer, or manager, of Wylam Colliery by Christopher Blackett, who had inherited the colliery and wagonway in 1800. Unlike most Tyneside wagonways, the gradient of the Wylam line was insufficient for loaded wagons to run down by gravity and they had to be hauled by horses. Blackett had a locomotive, of the type designed by Richard Trevithick, built at Gateshead as early as 1804 but did not take delivery, probably because his wooden track was not strong enough. In 1808 Blackett and Hedley relaid the wagonway with plate rails of the type promoted by Benjamin Outram, and in 1812, following successful introduction of locomotives at Middleton by John Blenkinsop, Blackett asked Hedley to investigate the feasibility of locomotives at Wylam. The expense of re-laying with rack rails was unwelcome, and Hedley experimented to find out the relationship between the weight of a locomotive and the load it could move relying on its adhesion weight alone. He used first a model test carriage, which survives at the Science Museum, London, and then used a full-sized test carriage laden with weights in varying quantities and propelled by men turning handles. Having apparently satisfied himself on this point, he had a locomotive incorporating the frames and wheels of the test carriage built. The work was done at Wylam by Thomas Waters, who was familiar with the 1804 locomotive, Timothy Hackworth, foreman smith, and Jonathan Forster, enginewright. This locomotive, with cast-iron boiler and single cylinder, was unsatisfactory: Hackworth and Forster then built another locomotive to Hedley's design, with a wrought-iron return-tube boiler, two vertical external cylinders and drive via overhead beams through pinions to the two axles. This locomotive probably came into use in the spring of 1814: it performed well and further examples of the type were built. Their axle loading, however, was too great for the track and from about 1815 each locomotive was mounted on two four-wheeled bogies, the bogie having recently been invented by William Chapman. Hedley eventually left Wylam in 1827 to devote himself to other colliery interests. He supported the construction of the Clarence Railway, opened in 1833, and sent his coal over it in trains hauled by his own locomotives. Two of his Wylam locomotives survive— Puffing Billy at the Science Museum, London, and Wylam Dilly at the Royal Museum of Scotland, Edinburgh—though how much of these is original and how much dates from the period 1827–32, when the Wylam line was re-laid with edge rails and the locomotives reverted to four wheels (with flanges), is a matter of mild controversy.
    [br]
    Further Reading
    P.R.B.Brooks, 1980, William Hedley Locomotive Pioneer, Newcastle upon Tyne: Tyne \& Wear Industrial Monuments Trust (a good recent short biography of Hedley, with bibliography).
    R.Young, 1975, Timothy Hackworth and the Locomotive, Shildon: Shildon "Stockton \& Darlington Railway" Silver Jubilee Committee; orig. pub. 1923, London.
    C.R.Warn, 1976, Waggonways and Early Railways of Northumberland, Newcastle upon Tyne: Frank Graham.
    PJGR

    Biographical history of technology > Hedley, William

  • 7 Merz, Charles Hesterman

    [br]
    b. 5 October 1874 Gateshead, England
    d. 14 October 1940 London, England
    [br]
    English engineer who pioneered large-scale integration of electricity-supply networks, which led to the inauguration of the British grid system.
    [br]
    Merz was educated at Bootham School in York and Armstrong College in Newcastle. He served an apprenticeship with the Newcastle Electric Supply Company at their first power station, Pandon Dene, and part of his training was at Robey and Company of Lincoln, steam engine builders, and the British Thomson-Houston Company, electrical equipment manufacturers. After working at Bankside in London and at Croydon, he became Manager of the Croydon supply undertaking. In 1898 he went to Cork on behalf of BTH to build and manage a tramway and electricity company. It was there that he met William McLellan, who later joined him in establishing a firm of consulting engineers. Merz, with his vision of large-scale electricity supply, pioneered an integrated traction and electricity scheme in north-eastern England. He was involved in the reorganization of electricity schemes in many countries and established a reputation as a leading parliamentary witness. Merz was appointed Director of Experiments and Research at the Admiralty, where his main contribution was the creation of an organization of outstanding engineers and scientists during the First World War. In 1925 he was largely responsible for a report of the Weir Committee which led to the Electricity (Supply) Act of 1926, the formation of the Central Electricity Board and the construction of the National Grid. The choice of 132 kV as the original grid voltage was that of Merz and his associates, as was the origin of the term "grid". Merz and his firm produced many technical innovations, including the first power-system control room and Merz-Price and Merz-Hunter forms of cable and transformer protection.
    [br]
    Principal Honours and Distinctions
    Institution of Electrical Engineers Faraday Medal 1931.
    Bibliography
    1903–4, with W.McLennan, "Power station design", Journal of the Institution of Electrical Engineers 33:696–742 (a classic on its subject).
    1929, "The national scheme of electricity supply in Great Britain", Proceedings of the British Association, Johannesburg.
    Further Reading
    J.Rowland, 1960, Progress in Power. The Contribution of Charles Merz and His Associates to Sixty Years of Electrical Development 1899–1959, London (the most detailed account).
    L.Hannah, 1979, Electricity Before Nationalisation, London.
    ——, 1985, Dictionary of Business Biography, ed. J.Jeremy, London, pp. 221–7 (a short account).
    GW

    Biographical history of technology > Merz, Charles Hesterman

  • 8 Bell, Sir Isaac Lowthian

    [br]
    b. 15 February 1816 Newcastle upon Tyne, England
    d. 20 December 1904 Rounton Grange, Northallerton, Yorkshire, England
    [br]
    English ironworks proprietor, chemical manufacturer and railway director, widely renowned for his scientific pronouncements.
    [br]
    Following an extensive education, in 1835 Bell entered the Tyneside chemical and iron business where his father was a partner; for about five years from 1845 he controlled the ironworks. In 1844, he and his two brothers leased an iron blast-furnace at Wylam on Tyne. In 1850, with partners, he started chemical works at Washington, near Gateshead. A few years later, with his two brothers, he set up the Clarence Ironworks on Teesside. In the 1880s, salt extraction and soda-making were added there; at that time the Bell Brothers' enterprises, including collieries, employed 6,000 people.
    Lowthian Bell was a pioneer in applying thermochemistry to blast-furnace working. Besides his commercial interests, scientific experimentation and international travel, he found time to take a leading part in the promotion of British technical organizations; upon his death he left evidence of a prodigious level of personal activity.
    [br]
    Principal Honours and Distinctions
    Created baronet 1885. FRS 1875. Légion d'honneur 1878. MP, Hartlepool, 1875–80. President: British Iron Trade Association; Iron and Steel Institute; Institution of Mechanical Engineers; North of England Institute of Mining and Mechanical Engineers; Institution of Mining Engineers; Society of the Chemical Industry. Iron and Steel Institute Bessemer Gold Medal 1874 (the first recipient). Society of Arts Albert Medal 1895.
    Bibliography
    The first of several books, Bell's Chemical Phenomena of Iron Smelting… (1872), was soon translated into German, French and Swedish. He was the author of more than forty technical articles.
    Further Reading
    1900–1910, Dictionary of National Biography.
    C.Wilson, 1984, article in Dictionary of Business Biography, Vol. I, ed. J.Jeremy, Butterworth (a more discursive account).
    D.Burn, 1940, The Economic History of Steelmaking, 1867–1939: A Study in Competition, Cambridge (2nd edn 1961).
    JKA

    Biographical history of technology > Bell, Sir Isaac Lowthian

  • 9 Parsons, Sir Charles Algernon

    [br]
    b. 13 June 1854 London, England
    d. 11 February 1931 on board Duchess of Richmond, Kingston, Jamaica
    [br]
    English eingineer, inventor of the steam turbine and developer of the high-speed electric generator.
    [br]
    The youngest son of the Earl of Rosse, he came from a family well known in scientific circles, the six boys growing up in an intellectual atmosphere at Birr Castle, the ancestral home in Ireland, where a forge and large workshop were available to them. Charles, like his brothers, did not go to school but was educated by private tutors of the character of Sir Robert Ball, this type of education being interspersed with overseas holiday trips to France, Holland, Belgium and Spain in the family yacht. In 1871, at the age of 17, he went to Trinity College, Dublin, and after two years he went on to St John's College, Cambridge. This was before the Engineering School had opened, and Parsons studied mechanics and mathematics.
    In 1877 he was apprenticed to W.G.Armstrong \& Co. of Elswick, where he stayed for four years, developing an epicycloidal engine that he had designed while at Cambridge. He then moved to Kitson \& Co. of Leeds, where he went half shares in a small experimental shop working on rocket propulsion for torpedoes.
    In 1887 he married Katherine Bethell, who contracted rheumatic fever from early-morning outdoor vigils with her husband to watch his torpedo experiments while on their honeymoon! He then moved to a partnership in Clarke, Chapman \& Co. at Gateshead. There he joined the electrical department, initially working on the development of a small, steam-driven marine lighting set. This involved the development of either a low-speed dynamo, for direct coupling to a reciprocating engine, or a high-speed engine, and it was this requirement that started Parsons on the track of the steam turbine. This entailed many problems such as the running of shafts at speeds of up to 40,000 rpm and the design of a DC generator for 18,000 rpm. He took out patents for both the turbine and the generator on 23 April 1884. In 1888 he dissolved his partnership with Clarke, Chapman \& Co. to set up his own firm in Newcastle, leaving his patents with the company's owners. This denied him the use of the axial-flow turbine, so Parsons then designed a radial-flow layout; he later bought back his patents from Clarke, Chapman \& Co. His original patent had included the use of the steam turbine as a means of marine propulsion, and Parsons now set about realizing this possibility. He experimented with 2 ft (61 cm) and 6 ft (183 cm) long models, towed with a fishing line or, later, driven by a twisted rubber cord, through a single-reduction set of spiral gearing.
    The first trials of the Turbinia took place in 1894 but were disappointing due to cavitation, a little-understood phenomenon at the time. He used an axial-flow turbine of 2,000 shp running at 2,000 rpm. His work resulted in a far greater understanding of the phenomenon of cavitation than had hitherto existed. Land turbines of up to 350 kW (470 hp) had meanwhile been built. Experiments with the Turbinia culminated in a demonstration which took place at the great Naval Review of 1897 at Spithead, held to celebrate Queen Victoria's Diamond Jubilee. Here, the little Turbinia darted in and out of the lines of heavy warships and destroyers, attaining the unheard of speed of 34.5 knots. The following year the Admiralty placed their first order for a turbine-driven ship, and passenger vessels started operation soon after, the first in 1901. By 1906 the Admiralty had moved over to use turbines exclusively. These early turbines had almost all been direct-coupled to the ship's propeller shaft. For optimum performance of both turbine and propeller, Parsons realized that some form of reduction gearing was necessary, which would have to be extremely accurate because of the speeds involved. Parsons's Creep Mechanism of 1912 ensured that any errors in the master wheel would be distributed evenly around the wheel being cut.
    Parsons was also involved in optical work and had a controlling interest in the firm of Ross Ltd of London and, later, in Sir Howard Grubb \& Sons. He he was an enlightened employer, originating share schemes and other benefits for his employees.
    [br]
    Principal Honours and Distinctions
    Knighted. Order of Merit 1927.
    Further Reading
    A.T.Bowden, 1966, "Charles Parsons: Purveyor of power", in E.G.Semler (ed.), The Great Masters. Engineering Heritage, Vol. II, London: Institution of Mechanical Engineers/Heinemann.
    IMcN

    Biographical history of technology > Parsons, Sir Charles Algernon

  • 10 Priestman, William Dent

    [br]
    b. 23 August 1847 Sutton, Hull, England
    d. 7 September 1936 Hull, England
    [br]
    English oil engine pioneer.
    [br]
    William was the second son and one of eleven children of Samuel Priestman, who had moved to Hull after retiring as a corn miller in Kirkstall, Leeds, and who in retirement had become a director of the North Eastern Railway Company. The family were strict Quakers, so William was sent to the Quaker School in Bootham, York. He left school at the age of 17 to start an engineering apprenticeship at the Humber Iron Works, but this company failed so the apprenticeship was continued with the North Eastern Railway, Gateshead. In 1869 he joined the hydraulics department of Sir William Armstrong \& Company, Newcastle upon Tyne, but after a year there his father financed him in business at a small, run down works, the Holderness Foundry, Hull. He was soon joined by his brother, Samuel, their main business being the manufacture of dredging equipment (grabs), cranes and winches. In the late 1870s William became interested in internal combustion engines. He took a sublicence to manufacture petrol engines to the patents of Eugène Etève of Paris from the British licensees, Moll and Dando. These engines operated in a similar manner to the non-compression gas engines of Lenoir. Failure to make the two-stroke version of this engine work satisfactorily forced him to pay royalties to Crossley Bros, the British licensees of the Otto four-stroke patents.
    Fear of the dangers of petrol as a fuel, reflected by the associated very high insurance premiums, led William to experiment with the use of lamp oil as an engine fuel. His first of many patents was for a vaporizer. This was in 1885, well before Ackroyd Stuart. What distinguished the Priestman engine was the provision of an air pump which pressurized the fuel tank, outlets at the top and bottom of which led to a fuel atomizer injecting continuously into a vaporizing chamber heated by the exhaust gases. A spring-loaded inlet valve connected the chamber to the atmosphere, with the inlet valve proper between the chamber and the working cylinder being camoperated. A plug valve in the fuel line and a butterfly valve at the inlet to the chamber were operated, via a linkage, by the speed governor; this is believed to be the first use of this method of control. It was found that vaporization was only partly achieved, the higher fractions of the fuel condensing on the cylinder walls. A virtue was made of this as it provided vital lubrication. A starting system had to be provided, this comprising a lamp for preheating the vaporizing chamber and a hand pump for pressurizing the fuel tank.
    Engines of 2–10 hp (1.5–7.5 kW) were exhibited to the press in 1886; of these, a vertical engine was installed in a tram car and one of the horizontals in a motor dray. In 1888, engines were shown publicly at the Royal Agricultural Show, while in 1890 two-cylinder vertical marine engines were introduced in sizes from 2 to 10 hp (1.5–7.5 kW), and later double-acting ones up to some 60 hp (45 kW). First, clutch and gearbox reversing was used, but reversing propellers were fitted later (Priestman patent of 1892). In the same year a factory was established in Philadelphia, USA, where engines in the range 5–20 hp (3.7–15 kW) were made. Construction was radically different from that of the previous ones, the bosses of the twin flywheels acting as crank discs with the main bearings on the outside.
    On independent test in 1892, a Priestman engine achieved a full-load brake thermal efficiency of some 14 per cent, a very creditable figure for a compression ratio limited to under 3:1 by detonation problems. However, efficiency at low loads fell off seriously owing to the throttle governing, and the engines were heavy, complex and expensive compared with the competition.
    Decline in sales of dredging equipment and bad debts forced the firm into insolvency in 1895 and receivers took over. A new company was formed, the brothers being excluded. However, they were able to attend board meetings, but to exert no influence. Engine activities ceased in about 1904 after over 1,000 engines had been made. It is probable that the Quaker ethics of the brothers were out of place in a business that was becoming increasingly cut-throat. William spent the rest of his long life serving others.
    [br]
    Further Reading
    C.Lyle Cummins, 1976, Internal Fire, Carnot Press.
    C.Lyle Cummins and J.D.Priestman, 1985, "William Dent Priestman, oil engine pioneer and inventor: his engine patents 1885–1901", Proceedings of the Institution of
    Mechanical Engineers 199:133.
    Anthony Harcombe, 1977, "Priestman's oil engine", Stationary Engine Magazine 42 (August).
    JB

    Biographical history of technology > Priestman, William Dent

См. также в других словарях:

  • Newcastle Gateshead Medical Volunteers — The Newcastle/Gateshead Medical Volunteers Charity is a collective group of healthcare professionals from the North East of England comprising orthopaedic surgeons, nursing staff, physiotherapists and anaesthetists among others. The charity… …   Wikipedia

  • Tulip Inn Newcastle Gateshead (Newcastle Upon Tyne) — Tulip Inn Newcastle Gateshead country: United Kingdom, city: Newcastle Upon Tyne (Gateshead) Tulip Inn Newcastle Gateshead Location This modern hotel is located within the Maingate development on the edge of Team Valley, which is just off the A1 …   International hotels

  • Newcastle Upon Tyne (United Kingdom) — Hotels: Britannia Hotel Newcastle Airport (Newcastle Airport) Caledonian Hotel Newcastle Upon Tyne (City Centre) Copthorne Newcastle Hotel (River Tyne) Grey Street Hotel Newcastle Upon Tyne (City) …   International hotels

  • Gateshead Senators (American football) — Gateshead Senators are a British American Football Team based in Gateshead at Gateshead International Stadium. Origins The Senators started life in the 1980s as the Newcastle Senators, rising out of the ashes of the aptly named Newcastle Browns,… …   Wikipedia

  • NEWCASTLE-UPON-TYNE — NEWCASTLE UPON TYNE, port in Northumberland, N.E. England. Its small medieval Jewish group was expelled in 1234 at the request of the townspeople. Although there were individual Jews in the city by 1775, the organized community dates from 1831 –… …   Encyclopedia of Judaism

  • Gateshead — This article is about Gateshead, England. For the suburb of Newcastle in Australia, see Gateshead, New South Wales. For the larger local government district, see Metropolitan Borough of Gateshead. Coordinates: 54°57′N 1°36′W /  …   Wikipedia

  • Gateshead Millennium Bridge — Infobox Bridge bridge name = Gateshead Millennium Bridge caption = official name = locale = Newcastle/Gateshead, England carries = Cyclists Pedestrians crosses = River Tyne maint = begin = complete = open = 17 September 2001 (public) 7 May 2002… …   Wikipedia

  • Gateshead — Waterfront Koordinaten …   Deutsch Wikipedia

  • Newcastle Storm — stormcloud Club information Full name Newcastle Storm Amateur Rugby League Website www.pitchero.com/clubs/newcastlestormarl Colours Blue and amber Founded 2002 …   Wikipedia

  • Newcastle City Centre — Skyline …   Wikipedia

  • Newcastle Brown Ale — Manufacturer Heineken Introduced 1927 Alcohol by volume 4.7% Style English brown ale Newcastle Brown Ale is a beer produced by Heineken International. It was introduced in 1927 by Newcastle Breweries. In 2 …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»